

0040-4039(94)E0658-K

Mitsunobu Reactions of Glycals with Phenoxide Nucleophiles are S_N2'- Selective

Aditya Sobti and Gary A. Sulikowski*

Depanent of Chemistry, Texas A&M University, College Station, Texas 77843

Abstract: The C³-hydroxyl group of L-rhamnal (4) and D-glucal 7 underwent S_N2'-selective **Mitsnnobu displacements with substituted phenoxide nucleophiles. These reactions provide access to the corresponding a-arylglycoside.**

We required a method for the preparation of α -O-aryl glycoside of 2,3,6-trideoxy sugars in connection with planned syntheses of angucycline antibiotics.¹ A direct preparation starts with a substituted glycal and **requires an allylic displacement of** the **C3-hydroxyl in preference to direct nucleophilic attack. This transformation would serve to eliminate the C3 substituent and simultaneously introduce an oxidatively** removable group at C¹ (i.e. p-methoxyphenyl).

The first approach attempted in this work involved a Ferrier reaction of 3,4-di-0-acetylrhamnal **1.2** Unfortunately, the only observable product from this reaction was C-arylglycosides 3; none of the desired Oarylglycoside 2 was detected. Apparently, the desired product 2 suffered O-to-C **glycoside rearrangement under the acid** conditions of the Ferrier transformation. Similar rearrangements have been reported by other groups.³ Later, we found that the Ferrier rearrangement was viable using 15 equivalents of 4-methoxyphenol at elevated temperatures in the absence of a Lewis acid.⁴ However, a mixture of stereoisomers was formed and isolation of the product was experimentally difficult.

Mitsunobu displacements of allylic hydroxyl groups are generally considered to proceed with high S_{N2} regioselectivity.⁵ This has been elegantly demonstrated by using an optically active allylic alcohol for which S_N2 and S_N2 '-allylic displacements would yield enantiomeric products.⁶ Nevertheless, we felt that the natural bias of glycals to undergo allylic substitution in nucleophilic displacements reactions could override the intrinsic preference for direct displacement in Mitsunobu reactions.⁷ As illustrated by the results shown in the Table below this reasoning proved to be well founded.

entry	substrate	reaction conditions	product	yield $%$ $(\alpha;\beta)$
$\mathbf{1}$	$\prime\prime_{\ell_p}$ HO OН $\boldsymbol{4}$	$\pmb{\alpha}$ b	OR. Ω $^{\prime\prime}$ HO 5 R=p-CH3OC6H4 6 R=p-NO2C6H4	80% (α only) 78% $(\alpha \text{ only})$
$\mathbf 2$	TBSO ٠, HO _{in} OH 7	a b	TBSO OR Ο HO'' 8 R=p-CH3OC6H4 9 R=p-NO ₂ C ₆ H ₄	55% (a only) 68% (α only)
3	O η_{t_f} HO_{m_i} OH 10	$\bf a$.OR Ω . $\prime_{\ell_{\ell_p}}$ HO_{m} 11	50% (1:2)

Table 1. Mitsunobu reaction of glycals with substituted phenols.

a) p -CH₃OC₆H₄OH (1.2 equiv); DEAD (1.6 equiv); Ph₃P (1.1 equiv); CH₂Cl₂, 0 °C b) p-NO₂C₆H₄OH (1.2 equiv); DEAD (1.6 equiv); Ph₃P (1.1 equiv); CH₂Cl₂, 0 °C

The Mitsunobu reaction has found considerable application in the synthesis of aryl- and acylglycosides.^{3,8} Two significant observations have been made while employing the Mitsunobu reaction in glycosidic bond formation. First, the displacement of the anomeric hydroxyl group proceeds with inversion of configuration.^{8d,f} Secondly, selective displacement of the anomeric hydroxyl group over other hydroxyl groups is possible, thus eliminating the need for protecting group manipulation.^{8d} Based upon the second observation we examined the condensation between p-methoxyphenol and L-rhamnal(4) without protection of the C4 hydroxyl group. Dropwise addition of diethyl azodicarboxylate (DEAD) to a solution of pmethoxyphenol and L-rhamnal (4) in dichloromethane at 0 °C resulted in full consumption of the starting glycal within 1 h. Following concentration and purification by flash chromatography arylglycoside 5α was obtained in 80% yield, no other isomers were isolated.^{9,10} In a similar fashion p-nitrophenol was coupled with L-rhamnal (4) to provide 9α .⁹ The displacement reaction was then extended to 6-O-t-butyldimethysilyl ether of D-glucal (7). While the chemical yield of the displacement eroded in this case, the stereochemical integrity of the reaction remained high providing exclusively the corresponding α -aryl glycosides 8α and 9α .⁹ In contrast to L-rhamnal (4) and silyl protected **D-ghcal** 7, the condensation of p-methoxyphenol **with L-fucal** (10) produced a 1:2 mixture of 11α and 11β .

The stereochemical assignment of the products were determined in the following manner. Tetrapropylperruthenate oxidation of allylic alcohol 5 α provided ketone 12 (61%).¹¹ Oxidation of the minor isomer from the Mitsunobu coupling of L-fucal (10) with p-methoxyphenol also provided 12 (45%).^{9,10} On the other hand, oxidation of 11 β provided isomeric ketone 13 (55%).^{10,11} The structures of 12 and 13 were assigned based on NMR analysis. In particular, irradiation of the $H¹$ proton of ketone 12 resulted in a 4.0% nuclear Overhauser enhancement of $H²$. While similar irradiation of the $H¹$ proton in 13 produced a 5.5% nuclear Overhauser enhancement of $H⁵$. Ketones 12 and 13 were therefore assigned α - and β -configurations respectively.

Preparation of methoxy-substituted phenyl glycosides is of particular value since this facilitates subsequent oxidative removal of the aryl substituent if necessary_ I2 On the **other hand, nitrophenyl glycosides are** useful since they arc frequently used as synthetic substrates for certain glycosidases and glycosyl transferases.¹³ Of particular concern to us, these studies provide a paradigm for synthesis of the trisaccharide fragment of the angucycline antiobiotic $PI-080$.¹

Acknowledgments

This work was supported in part by the donors of The Petroleum Research Fund, administered by the American Chemical Society, and the Robert A. Welch Foundation (A-1230) . G. A. S. thanks the American Cancer Society for a Junior Eaculty Research Award.

References and Notes

1. **(a)** Kawashima, A.; Kishimura, Y.; Tamai. M.; Hanada. K. Chem *Pharm. Bull.* **1989,37,3429. (b)** Review: Rohr. J; Thiericke, R. **Natural** *Product Reports* **1992.9, 103.**

- **2.** *(a)* Ferries. R. J. *Adv. Carbohydr. Chem Biochem 1%9,24. W-266. (3~) Ferrier,* R. J.; Prasad, N. J. Chem Sot. C **1969,570. (c)** Grynkiewicz, G.; Preibe, W.; Zamojski, Q. Curbohydr. Res. 1979.68, 33.
- **3.** (a) Booma C.; Balasubramanian, K.K. *Tetrahedron Lett. 1993,34.6757. (b)* Kometani. T.; Kondo, H.; Fujimori, Y. *Synthesis* **1988,1005.**
- **4.** Brakata, M.; Lhoste, P.; Sinou. D. J. *Org. Chem* 1989.54, 1890.
- **5.** Mitsunobu, 0. *Synthesis* 1981. 1.
- **6. Trost, B. M.; Kondo, Y.** *Tetrahedron Lett.* **1991**, 32, 161
- 7. **Examples of S_N2' Mitsunobu Reactions: (a) Farina, V.** *Tetrahedron Lett.* **1989, 30, 6645. (b)** Danishefaky, S.; Berman, E. M.; Ciufolini. M.; Etheredge, S. J.; Segmuller, B. E. J. *Am Chem Sot. 1985,* I07,3891. (c) Lumin, S.; Yadagiri, P.; Falck. J. R. *Tetrahedron Lett. 1988,29,4237.* **(d) Chsrette, A. B.; Cote, B.** *Tetrahedron Lett. 1993,34,6833.*
- **8. (a) Gtynkiewicz, G.** *Curbohydr. Res. 1977,53,* Cl 1. **(b)** Szarek, W. A.; Jarmll. H. C.; Jones, J. K. N. *Carbohydr. Res. 1977,57, C13. (c) Gregg,* P. J.; Iversen, T.; Norberg. T. *Curbohydr. Res, 1979.73, 313.* **(d)** Smith, A. B., III; Hale, K. J.; Rivero, R. Z. *Tetrahedron L&t. 1986.27.5813. (e)* Nicolaou, K. C.; Groneberg. R. D. J. *Am. Chem Sot.* **1990,112,4085.** (f) Roush, W. R.; Lin, X-F. J. *Org. Ckem* **1991,56,** 5740.
- **9.** The structure assigned to each new compound was in accord with its 'H and 13C NMR (ZOO and 50 MHz respectively) spectra, as well as elemental composition data [HRMS (parent **ion identification) and/or** combustion analysis $(\pm 0.4\%)$].
- 10. 5 α : [α] D_{20} -132.12° (c 1.18, CHCl₃); IR (CHCl₃) 3500, 1598 cm⁻¹; ¹H-NMR (200 MHz,CDCl₃) 8 7.02 **(d.J=9.1** Hz,2H),6.87 (d..7=9.2Hz.2H).6.04(d,J= lO.OHz, lH), 5.93 (m,lH),5.51 (d,J=2.6Hz, 1H), 3.90 (m, 2H), 3.79 (s, 3H), 2.06 (s, OH, 1H), 1.35 (d, J = 5.9 Hz, 3H). ¹³C-NMR (50 MHz,CDCl₃) 8 155.3, 151.8. 134.7, 126.4. 118.8. 114.9,94.4,69.8,69.2,56.1,32.0, 18.4. 14.5. 12: $[\alpha]D_{20}$ -105.74° (c 0.46, CHCl₃); IR (CHCl₃) 1714 cm⁻¹; ¹H-NMR (200 MHz,CDCl₃) δ 7.06 (d, J = 9.02 Hz, 2H) 6.97 (dd J= 3.7, 10.2 Hz, lH), 6.89 (d, J= 9.1 Hz, 2H), 6.23 (d, J= 10.1 Hz ,lH), 5.78 **(d, J** $= 3.5$ Hz, 1H), 4.74 (q, $J = 6.7$ Hz, 1H), 3.80 (s, 3H), 1.43 (d, $J = 6.8$ Hz, 3H). ¹³C-NMR (50 MHzCDC13) 6 196.5, 155.2, 150.9, 142.3, 127.6, 118.0, 114.5,92.6,70.9.55.5. 15.1. **13:** $[\alpha]D_{20} +84.13^{\circ}$ (c 23, CHCl₃); IR (CHCl₃) 1702 cm⁻¹; ¹H-NMR (200 MHz,CDCl₃) δ 7.02 (d, *J* = 8.9 Hz, 2H), 6.97 (m, 1H), 6.85 (d, $J = 9.0$ Hz, 2H), 6.22 (d, $J = 10.3$ Hz, 1H), 5.85 (s, 1H), 4.34 (q, $J = 7.0$ Hz, 1H), 3.76 (s, 3H), 1.50 (d, $J = 6.96$ Hz, 3H). ¹³C-NMR (50 MHz, CDCl₃) δ 196.3, 155.1, 150.5, 144.7, 127.8, 117.9,114.3,93.9,75.3,55.4, 17.8.
- 11. Griffith, W. P.; Ley, S. V.; Whicombe. G. P.; White, A. D. JCS *Chem.* Commun. 1987, 1625.
- 12. Slaghek, T. M.; Hypponen, T. K.; Ogawa, T.; Kamerling, J. P.; Vliegenthart, J. F. G. *Tetrahedron Lett.* **1993,49,7939.**
- 13. Nilson, K. G. I. In *Opportunities in Biotransformations;* Copping, L. G.; Martin, R. E.; Pickett, Z. A.; Bucke, C.; Bunch, A. W., Eds.; Elsvier: Amsterdam, 1990, pp 131-139.

(Received in USA 15 February 1994; *revised* 25 *March* 1994; *accepted 31 March* 1994)